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Distributed-Parameter Large Basin Runoff Model.
II: Application

Thomas E. Croley II1; Chansheng He2; and Deborah H. Lee3

Abstract: Following the derivation of a distributed-parameter large basin runoff model from a lumped-parameter version for t
Lakes in the companion paper, we here apply it to the Kalamazoo River watershed in southwest Michigan. First we review relev
efforts and then describe the digitization of the watershed into a network of cells through which watershed internal flows are r
present the technology used on the Kalamazoo River to create grids of topography, soils, land use, and vegetation data. We
calibration of both lumped-parameter and distributed-parameter runoff models on the Kalamazoo River and use observed s
variations in our parameter determinations. We investigate alternative evapotranspiration schemes, spatial parameter pa
insolation interpretations, and temporal scaling and compare model results. We suggest model extensions for future work.
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Background

The development of large-scale operational hydrologic mode
essential for support of long-term water resource planning
management over large river basins. Large-scale operation
drologic models are defined over large areass.103 km2d and long
timescales typically for use over monthly and annual or lo
timescales at a daily interval. Large-scale models are often
strained by limited data availability, computational requireme
and model application costs over larger areas, so they mus
few parameters, use easily accessible meteorological and h
logic databases, and be user-friendly. Because of such l
many large-scale hydrologic models—including the Stanford
tershed Model~Crawford and Linsley 1966!, the United State
Geological Survey’s Precipitation-Runoff Modeling Syst
~Leavesley and Stannard 1995!, the Hydrologic Simulation Pro
gram in FORTRAN~Bicknell et al. 1996!, and the Large Bas
Runoff Model ~Croley 2002!—are spatially lumped parame
models and hence do not adequately take into account the e
of spatial variations of landscape.

The Large Basin Runoff Model~LBRM! of the Great Lake
Environmental Research Laboratory~GLERL! is a lumped
parameter, interdependent tank-cascade model~Croley 2002!. It
uses mass continuity equations coupled with linear reservoir
cepts, and it consists of four components: land surface, uppe
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zone, lower soil zone, and groundwater zone. The LBRM
readily available daily climatological and hydrologic data,
quires few parameters and data, and is applicable to other
watersheds beyond the Great Lakes basin. However, spatia
ability of watersheds is not fully incorporated in the lump
parameter LBRM. With the rapid development in computing t
nology and the increasing availability of multiple dig
databases, a distributed LBRM is possible to utilize available
tabases and new algorithms in simulating rainfall-runoff in la
basins. The companion paper by Croley and He~2005! discusse
differences between micro- and macroscale models and pro
a framework to modify the macroscale lumped-parameter LB
to a 2D distributed LBRM. In this paper, we present the im
mentation results of the 2D LBRM framework to the Kalama
River basin in southwest Michigan; Fig. 1. We first describe
cessing multiple databases and calibrating the 2D LBRM,
present model application results to the study watershed, a
nally discuss alternative model structures for future develop
and refinement.

Discretizing Watershed

Spatial variations of precipitation, soil, vegetation, and topo
phy have significant impacts on runoff modeling~Beven 2000!.
Although lumped-parameter models treat the catchment
single unit, with state variables representing averages ove
entire catchment area, distributed models make prediction
are distributed in space, with state variables representing
averages. These local averages are defined over a number
ments or grid squares and are obtained by solving the equ
for the state variables associated with every element~Beven
2000!. Compared with lumped models, distributed models~even
simple 2D ones! take into account the variation of spatial hete
geneity and help modelers and resource planners better u
stand the spatial response to hydrologic events; e.g., see the
nonpoint source watershed environment response simu
~ANSWERS! model ~Beasley et al. 1980! and the variable infi

tration capacity model~Liang et al. 1994!. Available topographic
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databases and algorithms make the development of distri
models readily feasible. Operational models should take ad
tage of available databases for elevation, hydrography, soils
meteorology to account for spatial variations of climate, soil
pography, vegetation, and land-use practices. Watersheds s
be discretized into either grids or hydrological response u
large-scale operational models then should be applied to
resulting cell, and the output from each cell should be route
the watershed outlet.

Although discretization of watersheds has been a very im
tant topic in recent years, research is still evolving. Wood
Lakshmi ~1993! proposed the use of a representative eleme
area ~REA! for representation of spatial variability. The RE
ranging in size from 1–2.25 km2 to 5–10 km2, is defined as th
fundamental scale for detailed spatial modeling of hydrolog
processes. Beyond the REA, a statistical approach can be u
model the hydrological processes to simplify the computati
burden. Goodrich et al.~1997! propose the concept of “a critic
transition threshold area” of about 37–60 has0.37–0.6 km2d and
report that watershed runoff response becomes more non
with increasing watershed scale beyond that threshold area.
researchers have proposed the concepts of hydrologically s
units ~HSUs! and hydrologic response units~HRUs! to represen
aggregate areas of similar hydrologic behavior on the bas
topography, land use, soil, and vegetation~Becker and Brau
1999; Karvonen et al. 1999!. This approach, as compared with
grid approach~systematically discretizing the watershed int
grid of squares!, is more efficient computationally as a specific
of model parameters and is applicable to each type of HR
HSU. For 2D hydrologic modeling at large scales, discretiza

Fig. 1. Great
of the study watershed into either grids or HRUs appears to be a
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feasible way to represent the spatial variability of the waters
The size of the grids or HRUs should be determined by com
hensive consideration of the characteristics of climate, top
phy, soil, land use, and vegetation in the study area.

Present Technology

In this study, the current lumped-parameter LBRM is expand
two ~spatial! dimensions for a study watershed represented
grid system~Croley and He 2005!. Since determining HRUs in
volves the integration of soil, vegetation, and topography in
mation and since there are no standard procedures to define
and relevant input parameters for each HRU, we chose to
cretize the study watershed into a grid of 1 km by 1 km cells~to
match existing areal coverage of meteorological data! based on
the watershed boundary determined by using a GIS interfac
ArcView Nonpoint Source Modeling~AVNPSM! interface by He
et al.~2001!. Subsequently, model parameters are defined for
grid cell on the basis of soil, topography, and vegetation.
modified 2D LBRM is then applied to each 1 km2 grid cell, and
the output flow from each cell is routed accumulatively do
stream.

A digital elevation model from the U.S. Geological Survey~at
1:250,000 scale! is used to derive topographically related par
eters ~flow direction, receiving cell number, and slope! by the
AVNPSM. Fig. 2 shows elevation and slope for the Kalama
River watershed. Flow from a cell can flow into one of e
adjacent cells downstream on the basis of the slope differ
among them. Subsequently, each grid is assigned a flow dire
and a receiving cell number~a cell that receives the flow from t

s location map
Lake
adjacent upstream cell!. As the flow net allows only one outlet,
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flow directions must be carefully inspected to eliminate any
loops ~Croley and He 2005!. A utility module in the AVNPSM
was used to check such errors and allow a user to edit flo
rection either by one cell at a time or several cells at a time~He et
al. 2001!. The verified flow net is then used to route flow~Croley
and He 2005!. A 1:250,000-scale USGS 1990 land-cover data
~USGS Prototype 1990 Conterminous U.S. Land Cover Ch
teristics Data Set CD-ROM! is used to derive a land-cover c
egory ~code! for each grid cell by the AVNPSM; see Fig. 3.
using the suggested values in Table 1 to associate flow roug
to land cover~Mays 2001; Dingman 2002!, Fig. 3 also show
flow roughness as Manning’sn.

A state soil geographic database~STATSGO! is used to deriv
depth, available water capacity~AWC!, soil texture, and perm
ability for upper and lower soil zones. Although some rese
~Cosby et al. 1984; Abdulla et al. 1996; Yu et al. 2001! has esti
mated hydraulic conductivity from soil texture and porosity,
listed as permeability in STATSGO. STATSGO Soil Layer 1
used as the upper soil zone~USZ! for the LBRM, and Layers 2 t
6 are used as the lower soil zone~LSZ!. Values of depth and AW
for Layers 2 to 6 are aggregated to generate area-weighted
for the lower soil zone. First averaging the low and high value
permeability for each of Layers 2 through 6 and then weigh
by the relative depth of each layer determine the average p
ability for the lower soil zone. Average depth, AWC, and per
ability in the USZ and LSZ are further weighted areally to de
mine their value for each soil association~soil association is a un
on which soil information is mapped and assembled! ~USDA SCS
1993!. The derived soil depth, AWC, texture, and permeability
map unit are then assigned to each grid cell by the AVNP
interface~He et al. 2001!. Fig. 4 shows upper and lower soil-zo
depth and permeability.

Fig. 2. Kalamazoo River waters

Fig. 3. Kalamazoo River watershed la
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Calibration

Lumped-Parameter Large Basin Runoff Model

Calibration began with the lumped-parameter LBRM applie
the Kalamazoo River basin~one “cell” defined for the whol
5,612-km2 watershed!. Calibration consists of a systematic sea
of the parameter space to minimize the root-mean-square
between actual daily outflow volumes and model outflow
umes. The search consists of minimizing this error for each
rameter, selected in rotation, until convergence in all param
to two or three significant figures is achieved~Croley 2002!. This
procedure is implemented inFORTRAN95 for IBM-compatible
personal computers, suitable for use under either MSDOS or
dows~95, 98, NT, 2000, or XP!. The software can also be used
maximize sample correlation between actual and model
flow volumes. Although this software does not give unique
brated parameter sets, the hydrology that results from the p
eter sets of different calibrations, starting from different in
sets of parameter values, is repeatable. Various calibration p
were tested, as summarized in Table 2. The idea is to use the
part of the 1948–1999 data period for calibration, saving the
part for later verification studies. The first 2 years of the pe
are used for model initialization and should not contribute to
timization statistics. Leaving out the first 2 years from the c
bration is illustrated in Table 2. We compare the 1948–1957
1950–1959 rows or the 1948–1967 and 1950–1969 rows. In
cases, correlation~Column 2! and root-mean-square er
~RMSE, Column 3! associated with optimum parameter sets
prove. Also, average model outflow is closer to actual~see Col
umn 4!. Internal model flow averages~in Columns 5–9! are af-
fected. In Table 2, the 1950–1959 data set yields better sta

levation and slope~1 km2 resolution!

ver and flow roughness~1 km2 resolution!
hed e
nd co
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than the 1950–1969 set. We wanted to find the data set yie
the best possible fit to minimize parameter determination is
associated with data inappropriateness and allow concentrat
model structure in subsequent calibration experiments. Tria
error showed that the 1950–1963 and 1950–1964 periods giv
overall best calibrations; the former gives the best correlation
the latter gives the best RMSE.

Distributed-Parameter Large Basin Runoff Model

We began distributed-parameter LBRM determinations ex
mentally, keeping each parameter spatially constant over th
tershed and changing them one at a time. We compared m
outflows with observed values to devise, by inspection, an ac
able starting parameter set for a calibration. Basically, we h
increase the upper soil-zone capacity by an order of magn
which controls surface runoff and infiltration; see Eq.~1! in Cro-
ley and He~2005!. The partial-area concept that the model us
a large-area concept and is not appropriate for small cell are
the same value for upper soil-zone capacity. Original value
not allow enough infiltration, resulting in a very “flashy” surfa
response to all storms. Fig. 5 illustrates with results from the
and last parameter experiments.

Table 1. Manning’s Flow Roughness as Function of Land Cover

Land cover Manning’sn

Urban 0.01

Agriculture 0.04

Deciduous forest 0.24

Evergreen forest 0.41

Water 0.04

Wetland 0.07

Barren land 0.05

Fig. 4. Kalamazoo River watershed soi
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l

We then modified the lumped-parameter calibration proce
for use in a distributed-parameter setting to optimize the sp
average values of all parameters while imposing a spatial s
ture onto each parameter over the cells of the watershed
initially used a shorter calibration period than used for
lumped-parameter calibrations shown in Table 2 to reduce
extensive computation times associated with the distrib
model calibration. First, we used no spatial structure in the
rameters; i.e., each parameter was taken as spatially uniform
the cells of the watershed. We used the results from the la
rameter experiments, just described, as starting values for th
rameter calibrations. After calibrating the values of spatially
stant parameters, we introduced 10% spatial variation into
parameter,a, according to observed normalized variation in
lected data,x

ai = ā31 xi

1

no
j=1

n

xj

− 12 10%

100 %
+ 14 − ā fsxi,10% s1d

where ai5model parameter for celli; ā5spatial average valu
for the parameter, determined in a calibration along with valu
the spatial average values of the other parameters;xi5data value
for cell i; n5number of cells in the watershed; and

fsxi,«d = 1 xi

1

no
j=1

n

xj

− 12 «

100%
+ 1 s2d

For example, the linear reservoir coefficient for basin outflow
cell i, sasdi, was taken as«510% proportional to the normaliz
square root of the slope of a cell, as follows:

depths and permeabilities~1 km2 resolution!
l-zone
OF HYDROLOGIC ENGINEERING © ASCE / MAY/JUNE 2005 / 185
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Table 2. Selected Summary Statistics for Lumped-Parameter Large Basin Runoff Model Kalamazoo River Calibration

Calibration
period Correlation

RMSE
~cm!

Long-term average ratio to surface supply

Model
outflow

Surface
runoff Interflow

Groundwater
flow

Upper zone
evaporation

Lower zone
evaporation

1948–1957 0.880 0.0224 0.991 0.070 0.050 0.247 0.616 0.00

1948–1967 0.864 0.0217 0.994 0.070 0.039 0.231 0.634 0.01

1950–1959 0.894 0.0190 1.004 0.075 0.036 0.244 0.627 0.00

1950–1969 0.871 0.0202 1.002 0.083 0.019 0.239 0.619 0.03

1950–1964 0.895 0.0184 1.005 0.068 0.032 0.246 0.574 0.07

1950–1963 0.896 0.0185 1.005 0.066 0.035 0.253 0.586 0.05
Fig. 5. Distributed-large basin runoff model parameter experiments
186 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MAY/JUNE 2005
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sasdi = āsfsÎsi,«d s3d

where ās5spatial average linear reservoir coefficient for ba
outflow from a cell; andsi5 surface slope of celli. Likewise,
percolation, interflow, deep percolation, and groundwater-
linear reservoir coefficients were taken, respectively, as

sapdi = āpfSKi
U

di
U ,«D s4d

saidi = āi fSKi
U

di
U ,«D s5d

saddi = ādfSKi
L

di
L ,«D s6d

sagdi = āgfSKi
L

di
L ,«D s7d

whereKi
U5upper andKi

L5lower soil-zone permeability in celli;
di

U5upper anddi
L5lower soil-zone depth; andāp, āi , ād, and

āg5spatial average coefficients for percolation, interflow, d
percolation, and groundwater, respectively. Fig. 4 is used to
termine the soil-zone depths and permeabilities for Eqs.~4!–~7!.
After introducing«510% spatial variation into each of the p
ceding parameters, we calibrated to find the best values o
spatial averages. We repeated these calibrations for«520, 40, and
80% successive spatial variations to enable the use of calib
spatial average parameter values from one calibration as re
able starting values in the next. These calibrations are show
the first five rows in Table 3. Exploration of more than«580%
spatial variation in parameter fields indicated that calibration
not improve; we avoided problems of having zero values
model parameters that would exist at«5100%.

The first calibration in Table 3~with no spatial variation in th
model parameters allowed! resulted in an error of about 0.27 m
in daily flows but gave near unity values for the ratios of mode
actual flow means and variances. Considering 10% spatial v

Table 3. Distributed-Parameter Large Basin Runoff Model Kalamaz

Va Eb Setc SId Datee
RMSE
~cm! mM /mA sM

2 /sM
2

0 C — 1 1957 0.0266 0.987 0.9

10 C 1 1 1957 0.0261 0.975 0.9

20 C 1 1 1957 0.0261 0.976 0.9

40 C 1 1 1957 0.0260 0.976 0.9

80 C 1 1 1957 0.0259 0.977 0.9

80 I 1 1 1957 0.0257 0.981 0.8

80 I 2 1 1957 0.0257 0.983 0.8

80 I 2 2 1957 0.0258 0.983 0.9

80 I 2 3 1957 0.0331 0.978 0.7

80 I 2 1 1964 0.0217 1.004 0.8
aNormalized spatial variation allowed.
bEvapotranspiration assumed “complementary to”~C! or “independent o
cSpatial variation Set 1, given by Eqs.~3!–~7! or Set 2, given by Eqs.~8
dSolar insolation consideration 1~use climatic indices for solar insola
insolation from relations used in WGEN, Richardson and Wright 19!;
eCalibration period end date.
tions in the parameters with Eqs.~3!–~7! ~second calibration in

JOURNAL
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Table 3! reduced the error but also pulled the ratios of mode
actual flow means and variances further from unity. As suc
sively more spatial variation was allowed in the parameters~Cali-
brations 3–5 in Table 3!, all three measures improve; error dr
and the ratios of model to actual flow means and variances
approach unity.

Evapotranspiration

The first five calibrations in Table 3 were performed with a
tributed LBRM that used complementary evapotranspiration
potential evapotranspiration; see Croley and He~2005!. In this
case, both potential and actual evapotranspiration depend
available water supply and sum to equal the heat availabl
evapotranspiration. If the water supply is large, the daily a
evapotranspiration volume approaches the limit of the water
ply or the heat available, and the daily potential evapotrans
tion volume approaches zero. If the water supply is small
daily actual evapotranspiration volume approaches zero an
daily potential evapotranspiration volume approaches the
available; see Eqs.~14!–~17! in Croley and He~2005!.

As discussed by Croley and He~2005!, actual and potenti
evapotranspiration cannot be regarded as complementary
the LBRM is applied to a small cell; they must be replaced
concepts that make sense for the small scale. A more tradi
independent concept—that actual evapotranspiration does n
fect potential evapotranspiration—is much more appropriat
small areas, such as each of the cells used in the distrib
parameter LBRM application; see Eq.~21! in Croley and He
~2005!. The distributed-parameter LBRM was recalibrated, s
ing with the parameter set from the fifth calibration in Table 3
the case of independent evapotranspiration and potential e
transpiration. It is listed as Calibration 6 in Table 3.

Considering the changed evapotranspiration mechanics
sixth calibration in Table 3 gave mixed statistics. The error
reduced, compared with the fifth calibration in Table 3, and
ratio of model to actual flow means improved~closer to unity!.
However, the ratio of model to actual flow variances was m

ver Calibration Statistics

Long-term average ratio to surface supply

urface
runoff Interflow

Groundwater
flow

Upper zone
evaporation

Lower zone
evaporation

0.094 0.027 0.258 0.608 0.0

0.084 0.095 0.195 0.598 0.0

0.085 0.089 0.200 0.593 0.0

0.086 0.087 0.202 0.591 0.0

0.083 0.071 0.221 0.583 0.0

0.078 0.087 0.211 0.604 0.0

0.080 0.089 0.208 0.611 0.0

0.085 0.091 0.201 0.610 0.0

0.086 0.289 0.001 0.340 0.2

0.061 0.072 0.222 0.578 0.0

e potential.

nd compute heat constant from long-term heat balance!; 2 ~compute sola
~use solar insolation based on WGEN directly, no heat constant!.
oo Ri

S

46

24

27

30

35

87

98

12

93

29

f”~I! th

!–~12!.

tion a
84and 3
poorer, suggesting that model output is less variable than actual.
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Alternative Parameter Spatial Patterns

We also found calibration statistics to improve with this se
spatial variation patterns

sasdi = āsfSÎsi

h
,«D s8d

sapdi = āpfsKi
U,«d s9d

saidi = āi fsKi
U,«d s10d

saddi = ādfsKi
L,«d s11d

sagdi = āgfsKi
L,«d s12d

whereh5Manning’s roughness coefficient. Fig. 6 shows the
tial variation of Îsi /h, constructed from Figs. 2 and
Distributed-parameter calibration statistics for these calibrat
with parameter spatial patterns of Eqs.~8!–~12!, are also summa
rized in Table 3 as Calibration 7. Here we observe that alth
error remains essentially unchanged—that is, the improvem
too small to be seen with three significant figures, both ratio
model to actual flow means and variances improve compared
the previous calibration in Line 6 which used the same inde
dent actual and potential evapotranspiration mechanics but
the parameter spatial pattern of Eqs.~3!–~7!. Furthermore, w
observe that with this model calibration, about 61% of the sur
supply evaporates, almost entirely from the upper soil zone
about 21% flows as groundwater.

Insolation

Next, we experimented with alternative solar insolation inter
tations. The lumped-parameter LBRM~Table 2! and the
distributed-parameter LBRM~Table 3, the first seven calibr
tions! all use daily solar insolation derived from climatic indic
@see Eq.~20! of Croley and He~2005!#, and compute a he
constant, which is based on a long-term heat balance, to u
estimating daily solar insolation from air temperature. We
replaced the calculation of daily solar insolation from clim
indices, used in the computation of the heat constant, wit
reverse-engineered calculation~Croley and He 2005! from a
weather generator~WGEN! described by Richardson and Wrig
~1984!. We compute daily solar insolation as a function of lo
tion, time of year, minimum and maximum air temperature
precipitation for the current and previous day, and previous
insolation. The results are summarized as Calibration 8 in Tab
It is very similar to Calibration 7; the only difference in the t

Fig. 6. Kalamazoo River watershedÎsi /h ~1 km2 resolution!
models is that the insolation, used in computing the heat constant,

188 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MAY/JUNE 20
is computed differently. It gives slightly higher error but
model variation closer to actual than does the previous m
Either is probably suitable for future use.

We next used the reverse-engineered WGEN-derived sol
solation directly, replacing use of the heat constant applie
daily air temperature. Doing so eliminates the need to comp
heat constant in the first place. Results are summarized as
bration 9 in Table 3. Calibration 9 is much worse in error
variance than model Calibrations 7 or 8. It shifts evapotrans
tion from solely the upper soil zone to roughly split between
upper and lower soil zones.

Model Comparisons

The best calibration~that is, Calibration 7 in Table 3! was re-
peated for the 1950–1964 calibration period so that we c
directly compare it with the lumped-parameter LBRM calibra
in Table 2; it is shown as the tenth, that is, the last, calibratio
Table 3. Although the error is actually higher with the distribu
model, both models show very similar ratios of model to ac
flow means and very similar long-term average ratios to su
supply of surface runoff, interflow, groundwater flow, upper s
zone evapotranspiration, and lower soil-zone evapotranspir
Actually, the RMSE in Tables 2 and 3 only reveals part of
comparison. A better model comparison is given in Fig. 7, w
shows the same typical 2-year hydrograph from some of the
els. The lumped-parameter model, shown in Fig. 7~a!, has very
smooth recessions, whereas the distributed-parameter
simulations show more variability in the recessions, as wou
expected when spatial variability of rainfall, as well as of par
eters, is considered. The difference in recession variability
tween Figs. 7~a and b! reflects precipitation variability only, sin
spatial parameters variability is absent in both. Fig. 7~b! shows a
little closer match between model and actual flows than does
7~a!, but the biggest improvement occurs between Figs. 7~b and
c!. The latter allows spatial variability in the model parame
Likewise, additional improvement occurs between Figs. 7~c and
d!, representing a change in spatial parameters variation
Eqs.~3!–~7! to Eqs.~8!–~12!, respectively.

Temporal Scaling

As illustrated in Tables 2 and 3 and mentioned previously
goodness-of-fit of the lumped-parameter LBRM, in terms
RMSE, is better than that of the distributed-parameter LB
This result is in part attributable to the use of the same int
computation interval~1 day! in both models, since input mete
rology for both models is available only at the daily time inter
Presumably, the use of good hourly data would enable
distributed-parameter model to do better. We did explore ca
tions using the hourly time interval in the distributed-param
LBRM but only with daily data values for each of the 24 h in
day. Of course, the computation requirements increased dra
cally; however, no better results were obtained with the d
interval. Also, the results were similar between the hourly
daily models, possibly indicating that the daily time interva
small enough to allow the assumptions of constant precipita
potential evapotranspiration, and upstream surface flow d
each time interval~Croley and He 2005!. Again, this result i
expected to change with the availability of good hourly data
model modifications that recognize diurnal cycles in sev

processes.
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Extensions

We will explore alternative spatial variation schemes, as in
~3!–~7! or Eqs.~8!–~12!, by utilizing other observable watersh
characteristics to relate to spatial parameter variation. We
will explore several model formulation alternatives to impr
performance.

Evapotranspiration and Insolation

Since the consideration of evapotranspiration and potential e
transpiration as independent~appropriate for small scales! im-
proves model performance compared with considering
complementary~appropriate for large scales!, we will also ex-
plore the more traditional Penman-Monteith~PM! method. The
PM method is recommended for estimating daily and lon
period evapotranspiration over a wide range of climate condi
~Jensen et al. 1990; Xu and Singh 1998!. It links vegetation ef
fects to evapotranspiration through aerodynamic and canop
sistance terms where detailed databases are available. It a
that necessary data are available at the microscale for s
Great Lakes riverine watersheds, including the Kalamazoo
Maumee rivers.

Since the PM method requires aerodynamic and canopy
tance coefficients, databases of vegetation indices from the U
can be used to infer roughness length~Liang et al. 1994! and to
derive canopy resistance~Jensen et al. 1990; Liang et al. 19
Caselles et al. 1998!. Wind-speed data from climatological da
bases can be converted to 2-m height wind speed by emp
formula ~Jensen et al. 1990!. Vapor pressure deficit can be co
puted from minimum and maximum daily air temperatures
dew point temperatures. Net solar radiation can be estimat
previously, with vegetation indices used for estimating emiss
and soil heat flux generated as a percentage of net radiation~En-

Fig. 7. Selected 1950–1951 model co
gman and Gurney 1991!.

JOURNAL
s
l

Alternative Model Structures

The model structure employed herein and described in mor
tail previously~Croley and He 2005! applies the LBRM to eac
individual cell in the distributed approach. All subsurface flo
~interflow and groundwater flow! enter the surface flow before t
surface flow leaves the cell. This approach implies no subsu
flows between cells. The advantage of this approach is tha
relatively simple, computationally efficient, and easier to calib
than approaches that allow subsurface flows. However, it is a
restrictive assumption and probably is the reason for the rela
poorer calibration statistics of the distributed-parameter LB
compared with the lumped-parameter LBRM. We anticipate
the distributed-parameter LBRM calibration can be greatly
proved by modifying the model to allow subsurface flows
tween cells. Each watershed cell is divided into an upper
zone, a lower soil zone, and a groundwater zone~Croley and He
2005!. Each successively flows into the next, and all flow into
surface storage of the cell’s channel system.

As a first extension of the model structure, we would cha
the model to first allow an additional linear-reservoir flow
of the groundwater-zone storage into a downstream
groundwater-zone storage; doing so would add an additiona
rameter to the model and change the continuity equations u
lying the model~Croley and He 2005!. We would then furthe
modify the model to allow an additional flow into t
groundwater-zone storage from the upstream cell. Thus
would route the groundwater flows in a matter analogous to
surface routing. Most likely, we would employ the same drain
cascade of cells used for the surface routing; doing so implie
the groundwater divides of the watershed underlie the su
divides. These modifications would allow groundwater flow
each cell to the surface of that cell while also allowing grou
water contributions to continue in storage~other cell groundwate

isons with actual Kalamazoo River outflows
mpar
storages! before appearing at the outlet of the watershed. The
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model structure changes and programming modifications w
be similar to those already made to convert the lumped-para
LBRM into the distributed-parameter version~Croley and He
2005!.

As a second extension of the model structure, we w
change the model similarly to route additional flows through
lower soil-zone storages of the watershed cells. That is, we
an additional linear reservoir flow out of the lower soil-zone s
age into a downstream cell lower soil-zone storage, thereby
ing an additional parameter to the model. We would also allo
additional flow into the lower soil-zone storage from the upstr
cell and route lower soil-zone flows~interflows! in a matter analo
gous to the surface and groundwater routings, again empl
the same drainage cascade of cells determined by the s
topography. A third extension, if deemed worthwhile, would
tend the distributed-parameter LBRM in an analogous fashio
the upper soil-zone storages in the watershed cells. The add
parameters would be considered spatially variable, as in
~3!–~7! or Eqs.~8!–~12!.

These subsurface routing approaches should allow bette
sideration of landscape heterogeneity on subsurface hydro
response than do the current distributed-parameter and lum
parameter LBRM. They should also permit detailed accountin
the distribution of surface runoff, interflow, and groundwa
throughout the watershed. The main challenge is calibratin
ditional interflow and groundwater parameters, since virtuall
observed interflow and groundwater data are available over
areas in the Great Lakes basin. However, changing from 9
parameters is allowable with the degrees of freedom repres
by the available data sets.

Summary

We adapted the large basin runoff model from its lump
parameter formulation to a distributed-parameter formulation
propriate to model spatial watershed characteristics in the
panion paper~Croley and He 2005! and applied it here to th
Kalamazoo River watershed in southwest Michigan. We div
the watershed into a grid of 1-km2 cells and assembled data
each cell on elevation, slope, land cover, flow roughness, u
soil-zone depth, upper soil permeability, lower soil-zone de
and lower soil permeability. We used the data to estimate
spatial variability of model parameters as we calibrated the~spa-
tial! mean values by matching observed Kalamazoo River fl

The best-fit distributed-parameter model uses indepen
evapotranspiration and potential evapotranspiration~as oppose
to complementary!, which is appropriate for considering sma
scale processes. It also uses a linear surface storage coe
proportional to the square root of cell slope and inversely pro
tional to Manning’s roughness. Upper soil-zone percolation to
lower soil zone and lower soil-zone interflow to the surface
described with linear reservoir coefficients proportional to u
soil permeability. Lower soil-zone deep percolation to the gro
water zone and groundwater flow to the surface are desc
with linear reservoir coefficients proportional to lower soil-z
permeability. Distributed-parameter model calibrations y
higher root-mean-square errors between observed and mo
Kalamazoo River flows than do lumped-parameter model a
cations. However, inspection of hydrographs reveals tha
distributed-parameter model did a better job than the lum
parameter model in matching variations in hydrograph recess
Solar insolation interpretation experiments showed that the
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best results come from using daily solar insolation derived
climate indices, as was done in the lumped-parameter mod
the absence of solar insolation observations. Calibration
model that uses an hourly time interval yields no improvem
over one that uses a daily time interval, probably because m
rology data were not available and diurnal modeling conc
were not utilized. However, the daily-hourly model comparis
yield similar results, suggesting that the daily time interva
small enough to allow the assumptions of constant precipita
potential evapotranspiration, and upstream surface flow d
each time interval. Several model extensions appear logica
include spatial routing of groundwater, interflow, or upper s
zone flows.
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